
Figure 5.8 The nucleus of a carbon atom is composed of six
protons and six neutrons. As in hydrogen, the surrounding six
electrons do not have definite locations and so can be considered to
be a sort of cloud surrounding the nucleus.

The story of the atom does not stop there, however. In the latter part of the twentieth century, many more subatomic particles
were discovered in the nucleus of the atom: pions, neutrinos, and quarks, among others. With the exception of the photon,
none of these particles are directly relevant to the study of electromagnetism, so we defer further discussion of them until
the chapter on particle physics (Particle Physics and Cosmology (http://cnx.org/content/m58767/latest/) ).

A Note on Terminology
As noted previously, electric charge is a property that an object can have. This is similar to how an object can have a
property that we call mass, a property that we call density, a property that we call temperature, and so on. Technically, we
should always say something like, “Suppose we have a particle that carries a charge of 3 µC. ” However, it is very common

to say instead, “Suppose we have a 3-µC charge.” Similarly, we often say something like, “Six charges are located at the

vertices of a regular hexagon.” A charge is not a particle; rather, it is a property of a particle. Nevertheless, this terminology
is extremely common (and is frequently used in this book, as it is everywhere else). So, keep in the back of your mind what
we really mean when we refer to a “charge.”

5.2 | Conductors, Insulators, and Charging by Induction

Learning Objectives

By the end of this section, you will be able to:

• Explain what a conductor is

• Explain what an insulator is

• List the differences and similarities between conductors and insulators

• Describe the process of charging by induction

In the preceding section, we said that scientists were able to create electric charge only on nonmetallic materials and never
on metals. To understand why this is the case, you have to understand more about the nature and structure of atoms. In this
section, we discuss how and why electric charges do—or do not—move through materials (Figure 5.9). A more complete
description is given in a later chapter.

188 Chapter 5 | Electric Charges and Fields

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9

http://cnx.org/content/m58767/latest/


Figure 5.9 This power adapter uses metal wires and connectors to conduct electricity from the
wall socket to a laptop computer. The conducting wires allow electrons to move freely through the
cables, which are shielded by rubber and plastic. These materials act as insulators that don’t allow
electric charge to escape outward. (credit: modification of work by “Evan-Amos”/Wikimedia
Commons)

Conductors and Insulators
As discussed in the previous section, electrons surround the tiny nucleus in the form of a (comparatively) vast cloud of
negative charge. However, this cloud does have a definite structure to it. Let’s consider an atom of the most commonly used
conductor, copper.

For reasons that will become clear in Atomic Structure (http://cnx.org/content/m58583/latest/) , there is an
outermost electron that is only loosely bound to the atom’s nucleus. It can be easily dislodged; it then moves to a
neighboring atom. In a large mass of copper atoms (such as a copper wire or a sheet of copper), these vast numbers
of outermost electrons (one per atom) wander from atom to atom, and are the electrons that do the moving when
electricity flows. These wandering, or “free,” electrons are called conduction electrons, and copper is therefore an excellent
conductor (of electric charge). All conducting elements have a similar arrangement of their electrons, with one or two
conduction electrons. This includes most metals.

Insulators, in contrast, are made from materials that lack conduction electrons; charge flows only with great difficulty, if
at all. Even if excess charge is added to an insulating material, it cannot move, remaining indefinitely in place. This is why
insulating materials exhibit the electrical attraction and repulsion forces described earlier, whereas conductors do not; any
excess charge placed on a conductor would instantly flow away (due to mutual repulsion from existing charges), leaving
no excess charge around to create forces. Charge cannot flow along or through an insulator, so its electric forces remain
for long periods of time. (Charge will dissipate from an insulator, given enough time.) As it happens, amber, fur, and most
semi-precious gems are insulators, as are materials like wood, glass, and plastic.

Charging by Induction
Let’s examine in more detail what happens in a conductor when an electrically charged object is brought close to it. As
mentioned, the conduction electrons in the conductor are able to move with nearly complete freedom. As a result, when a
charged insulator (such as a positively charged glass rod) is brought close to the conductor, the (total) charge on the insulator
exerts an electric force on the conduction electrons. Since the rod is positively charged, the conduction electrons (which
themselves are negatively charged) are attracted, flowing toward the insulator to the near side of the conductor (Figure
5.10).

Now, the conductor is still overall electrically neutral; the conduction electrons have changed position, but they are still in
the conducting material. However, the conductor now has a charge distribution; the near end (the portion of the conductor
closest to the insulator) now has more negative charge than positive charge, and the reverse is true of the end farthest from
the insulator. The relocation of negative charges to the near side of the conductor results in an overall positive charge in the
part of the conductor farthest from the insulator. We have thus created an electric charge distribution where one did not exist
before. This process is referred to as inducing polarization—in this case, polarizing the conductor. The resulting separation
of positive and negative charge is called polarization, and a material, or even a molecule, that exhibits polarization is said to
be polarized. A similar situation occurs with a negatively charged insulator, but the resulting polarization is in the opposite
direction.
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Figure 5.10 Induced polarization. A positively charged glass
rod is brought near the left side of the conducting sphere,
attracting negative charge and leaving the other side of the
sphere positively charged. Although the sphere is overall still
electrically neutral, it now has a charge distribution, so it can
exert an electric force on other nearby charges. Furthermore, the
distribution is such that it will be attracted to the glass rod.

The result is the formation of what is called an electric dipole, from a Latin phrase meaning “two ends.” The presence of
electric charges on the insulator—and the electric forces they apply to the conduction electrons—creates, or “induces,” the
dipole in the conductor.

Neutral objects can be attracted to any charged object. The pieces of straw attracted to polished amber are neutral, for
example. If you run a plastic comb through your hair, the charged comb can pick up neutral pieces of paper. Figure 5.11
shows how the polarization of atoms and molecules in neutral objects results in their attraction to a charged object.

Figure 5.11 Both positive and negative objects attract a neutral object by polarizing its molecules. (a) A positive object
brought near a neutral insulator polarizes its molecules. There is a slight shift in the distribution of the electrons orbiting the
molecule, with unlike charges being brought nearer and like charges moved away. Since the electrostatic force decreases with
distance, there is a net attraction. (b) A negative object produces the opposite polarization, but again attracts the neutral object.
(c) The same effect occurs for a conductor; since the unlike charges are closer, there is a net attraction.

When a charged rod is brought near a neutral substance, an insulator in this case, the distribution of charge in atoms and
molecules is shifted slightly. Opposite charge is attracted nearer the external charged rod, while like charge is repelled. Since
the electrostatic force decreases with distance, the repulsion of like charges is weaker than the attraction of unlike charges,
and so there is a net attraction. Thus, a positively charged glass rod attracts neutral pieces of paper, as will a negatively
charged rubber rod. Some molecules, like water, are polar molecules. Polar molecules have a natural or inherent separation
of charge, although they are neutral overall. Polar molecules are particularly affected by other charged objects and show
greater polarization effects than molecules with naturally uniform charge distributions.

When the two ends of a dipole can be separated, this method of charging by induction may be used to create charged
objects without transferring charge. In Figure 5.12, we see two neutral metal spheres in contact with one another but
insulated from the rest of the world. A positively charged rod is brought near one of them, attracting negative charge to that
side, leaving the other sphere positively charged.
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Figure 5.12 Charging by induction. (a) Two uncharged or neutral metal spheres are in contact with each
other but insulated from the rest of the world. (b) A positively charged glass rod is brought near the sphere
on the left, attracting negative charge and leaving the other sphere positively charged. (c) The spheres are
separated before the rod is removed, thus separating negative and positive charges. (d) The spheres retain
net charges after the inducing rod is removed—without ever having been touched by a charged object.

Another method of charging by induction is shown in Figure 5.13. The neutral metal sphere is polarized when a charged
rod is brought near it. The sphere is then grounded, meaning that a conducting wire is run from the sphere to the ground.
Since Earth is large and most of the ground is a good conductor, it can supply or accept excess charge easily. In this case,
electrons are attracted to the sphere through a wire called the ground wire, because it supplies a conducting path to the
ground. The ground connection is broken before the charged rod is removed, leaving the sphere with an excess charge
opposite to that of the rod. Again, an opposite charge is achieved when charging by induction, and the charged rod loses
none of its excess charge.
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Figure 5.13 Charging by induction using a ground connection. (a) A positively charged rod is brought near a neutral metal
sphere, polarizing it. (b) The sphere is grounded, allowing electrons to be attracted from Earth’s ample supply. (c) The ground
connection is broken. (d) The positive rod is removed, leaving the sphere with an induced negative charge.

5.3 | Coulomb's Law

Learning Objectives

By the end of this section, you will be able to:

• Describe the electric force, both qualitatively and quantitatively

• Calculate the force that charges exert on each other

• Determine the direction of the electric force for different source charges

• Correctly describe and apply the superposition principle for multiple source charges

Experiments with electric charges have shown that if two objects each have electric charge, then they exert an electric force
on each other. The magnitude of the force is linearly proportional to the net charge on each object and inversely proportional
to the square of the distance between them. (Interestingly, the force does not depend on the mass of the objects.) The
direction of the force vector is along the imaginary line joining the two objects and is dictated by the signs of the charges
involved.

Let

• q1, q2 = the net electric charges of the two objects;

• r→ 12 = the vector displacement from q1 to q2 .

The electric force F→ on one of the charges is proportional to the magnitude of its own charge and the magnitude of the

other charge, and is inversely proportional to the square of the distance between them:

F ∝ q1 q2
r12

2 .

This proportionality becomes an equality with the introduction of a proportionality constant. For reasons that will become
clear in a later chapter, the proportionality constant that we use is actually a collection of constants. (We discuss this constant
shortly.)

Coulomb’s Law

The magnitude of the electric force (or Coulomb force) between two electrically charged particles is equal to
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